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Theorem of Levinson via the Spectral Density
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We deduce Levinson’s theorem in non-relativistic quantum mechanics in one dimension
as a sum rule for the spectral density constructed from asymptotic data. We assume a
self-adjoint Hamiltonian which guarantees completeness; the potential needs not to be
isotropic and a zero-energy resonance is automatically taken into account. Peculiarities
of this one-dimension case are explained because of the “critical” character of the free
case u(x) = 0, in the sense that any attractive potential forms at least a bound state. We
believe this method is more general and direct than the usual one in which one proves
the theorem first for single wave modes and performs analytical continuation.

KEY WORDS: non-relativistic quantum mechanics; Levinson theorem; spectral
density.

1. INTRODUCTION

Two generic results in potential scattering stand on their own, and hold with
wide generality. The first, the optical theorem (Feinberg, 1932) stems from the fact
that the scattered “matter” is taken away from the incoming wave, and hence the
scattering center “casts a shadow” in the forward direction as to produce negative
interference with the incoming beam; therefore a relation must exist between
the total scattering cross section and the forward scattering amplitude. Originally
proven in partial waves for 3D scattering, the theorem holds with much more
generality; a simple but very general proof is offered in Boya and Murray (1994).
The theorem can be seen as a result of the “completeness relation” in ordinary
space (also called orthogonality), at a given energy.

The second result is Levinson’s theorem, which in a way can be seen also as
a consequence of completeness in momentum space. In its primitive form of 1949
Levinson’s theorem reads (Levinson, 1949a)

n� = (1/π )(δ�(0) − δ�(∞)) (1)
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for the number n� of bound states of angular momentum � in a generic central po-
tential u(�r) = u(|�r|) which produces a phase shift δ�(k) for scattering with energy
E = k2; the proof came up as a byproduct of studies on uniqueness of potentials
with a given phase shift (Levinson, 1949b). Formula (1) was rediscovered in de
Witt (1956). In (Jauch, 1957) it is established the theorem as a consequence of
the completeness relation for scattering states and set it up in the general frame of
operator theory.

The philosophy was that, if a potential generates bound states, there should
be a relation between them and scattering states as the completeness relation
has to be “shared” among them. Indeed, Levinson’s theorem is the only relation
between bound states and scattering states as it can be deduced from inverse
scattering theory. Since the work of Jauch, many studies followed and we mention
in particular the elementary deduction by Wellner (1964) for s-waves in 3D,
which we shall generalize in this paper and the later studies of Newton relating
the theorem to the inverse problem in 1, 2 or 3 dimensions (Newton, 1977, 1983,
1984, 1982).

It is considerably more difficult to prove Levinson’s theorem than the optical
theorem, although both share complementary physical foundations. In this paper
we prove the theorem as a sum rule for the spectral density, which we take as more
fundamental entity; we shall work in one dimension with local potential where all
the features of the problem already show up. Indications for D > 1 will be given
at the end of the paper.

In our one-dimensional problem we shall not assume parity invariance (corre-
sponding to central forces in D = 3) nor we shall exclude a zero-energy resonance.
We were motivated by the spectral density considerations of Niemi and Semenoff
(1986) for fermions in solitonic backgrounds whereas the Wronskian-like tech-
nique is adopted from Wellner as stated. The plan of the paper is as follows: in
Section 2 we set up the scattering problem in D = 1, mainly to motivate nota-
tion for direct (left to right) and right to left (“zurdo”) scattering, unitarity of the
S-matrix, etc. In Section 3 we introduce the spectral density which needs to be
regularized in a box, but in the definition of relative spectral density the space cut-
off can (and will) be removed. As stated, Levinson’s theorem will appear clearly
as a sum rule for the relative spectral density.

In Section 4 we shall handle two simple examples which can be worked
out directly, namely the solitonic Pöschl-Teller potential u(x) = −2 sech2x and
the delta potential u(x) = g δ(x); the difference of generic vs. critical potential
will be cleared up, as well as the one-half factor already noted by Barton (1985),
and present in the one-dimensional case (another factor should appear in two
dimensions) (Cheney, 1984). The next section will exhibit our general treatment
of the relative spectral density for an arbitrary local potential u = u(x) (of course,
decaying at x → ±∞ fast enough to allow for scattering). We shall emphasize
that the spectral density is a “hard datum” (i.e. spectrum-dependent as opposed
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to the rest of potential parameters or “soft data”); the spectral density is given in
terms of the derivative of the phase of the forward amplitude, this amplitude itself
being a hard datum as well, explaining a result used routinely in the KdV-like
evolution equations. In Section 6 we carry out the momentum integration of the
density to produce the general form of Levinson’s theorem; we comment briefly on
the relation with the determinant of the S-matrix which suggests an interpretation
of the theorem as an index theorem for the bound states. In Section 7 we set up the
procedure for an arbitrary dimension, thus generalizing the method of Wellner;
noncentral and critical potentials (i.e., producing a zero-energy resonance) are
easily included; finally we make some comments on non-local potentials and add
some concluding remarks.

2. SCATTERING IN ONE-DIMENSION

Let

ψ ′′(x) + k2ψ(x) = u(x)ψ(x) (2)

be the Schrödinger equation in one dimension for a local (hence real because
hermitian) potential allowing scattering, i.e. satisfying (Deift and Trubowitz, 1979)

∫ ∞

−∞
(1 + x2)|u(x)| dx < ∞ (3)

for positive E = k2. The D = 1 scattering has card So = two modes, direct (in-
coming wave towards the right), with the asymptotic solution:

ψ(x) −→
{

exp(ikx) + b(k) exp(−ikx) for x � 0

t(k) exp(ikx) for x � 0
(4)

and zurdo scattering: the incoming wave travels towards the left

ψ̃(x) −→
{

exp(−ikx) + b̃(k) exp(ikx) for x � 0

t̃(k) exp(−ikx) for x � 0.
(5)

The amplitudes f (k) = t(k) − 1 and b(k) give the scattering coefficients by
the relations

σ→ = |f (k)|2, σ← = |b(k)|2 (6)

together with

|t(k)|2 + |b(k)|2 = 1 or |f (k)|2 + |b(k)|2 ≡ σtot = −2
f (k), (7)
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the optical theorem in one dimension. The S-matrix has two channels only

S(k) =
(

t(k) b̃(k)

b(k) t̃(k)

)
. (8)

Unitarity S†S = SS† leads to the important relations (with a = |a| exp(i�a)
for any amplitude)

|t(k)|2 + |b(k)|2 = |t(k)|2 + |b̃(k)|2 = |t̃(k)|2 + |b̃(k)|2 = 1 (9)

and

t(k)b(k)∗ + b̃(k)t̃(k)∗ = 0, �[t(k)] + �[t̃(k)] = π + �[b(k)] + �[b̃(k)].
(10)

Now the potential being local (and hermitian of course) is real, so time reversal
holds; it follows that

t(k) = t̃(k) (11)

whereas an even potential would imply similarly b(k) = b̃(k), which we do not
assume. To see (11), notice t(k) is defined as the transition from �kin to �kout .
Time reversal changes �k to −�k and in to out; hence t(k) goes to t̃(k). Also we
shall take k ≥ 0 for direct scattering and k ≤ 0 for zurdo scattering; indeed then
t̃(k) = −t(−k) for the above reasons.

We remind that we also use the terms hard data for spectral data, namely the
spectral density, and soft data for orientation data, to wit, normalization constants
for bound states and the phase of b(k).

3. THE SPECTRAL DENSITY

We recall first elementary properties of matrices. Completeness for a diago-
nalizable finite matrix M means

M =
∑
m

mPm or 1| =
∑
m

Pm (12)

for eigenvalues m and projectors Pm; the second relation is called resolution of
the identity. In his work on Quantum Mechanics, von Neumann (1932) extended
the classical work of Hilbert on integral equations for hermitian unbounded op-
erators with continuous spectrum: he called hypermaximal (today “self-adjoint”)
those hermitian operators H which still support a resolution of the identity. The
resolution reads

1|H =
N∑

j=1

Pj +
∫ ∞

0
dP (µ) (13)
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where H is the Hilbert space of states, 1| = 1|H is the unit operator, Pj projects
to the finite or infinite number (N = 0, 1, . . .) of bound states and the continuum
integral, supposed by simplicity extended from 0 to ∞, as in a standard poten-
tial problem, means projection-valued measures. Notice the unit operator 1|H is
bounded but not in the trace class.

The simplest approach to the Levinson’s theorem is to state the same resolu-
tion for the free system Ho

1|H =
∫ ∞

0
dP (o)(µ). (14)

Subtracting in (13) and then taking traces we get, supposing short-range
potentials which support at most finite number N of bound states

−N =
∫ ∞

0
Tr d

[
P (µ) − P (o)(µ)

]
(15)

which is, really, the most general (but rather useless) form of the theorem. The
idea is now to trade the projectors for scattering amplitudes (or phase shifts). We
know of course the normalized free continuum wave functions

ψ
(o)
k (x) = 1√

2π
exp(ikx). (16)

Let us normalize the continuum wave functions to 1, instead to
√

2π .
Then (15) for our case really means

−2πN =
∫ ∞

−∞
dk

∫ ∞

−∞
dx[|ψk(x)|2 − 1] (17)

as dP/dk ∼ |k〉〈k|, taking the traces in x-spaces, defining ψk(x) := 〈x|k〉 and
using the double degeneracy E = (±k)2 to extend the integral to ±∞. Expres-
sion (17) will be our fundamental formula; the k-integration will be clarified
below.

The main concern is to express (17) in terms of the asymptotic data (phase
shifts). Define the relative spectral density for the problem as

ρrel(k) :=
∫ ∞

−∞
dx [|ψk(x)|2 − 1]. (18)

Notice the individual spectral densities diverge, i.e. ρfree(k) = ∫
1 dx = ∞;

only relative densities make sense. The idea of the proof is to relate the spectral
densities to scattering data; as we know that the integral of the spectral density
gives Levinson’s, which express the number N of bound states in terms of the
range of the phase shift (0 → ∞), (see (1)), we expect the spectral densities to
be given in terms of derivatives of the phase shifts; we shall see that this is so.
Notice also the relative spectral density is a measure, that is, something under
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an integral symbol; hence some apparent pathologies like delta-type behavior or
box-normalization and removal are perfectly legitimate, and not only “heuristic”
as some authors state.

4. TWO SIMPLE EXAMPLES: PÖSCHL-TELLER
SOLITON AND DELTA POTENTIALS

As a warming-up exercise, let us compute the spectral densities in two simple
cases in which the exact continuum wave functions are known. When considering
the Pöschl-Teller potential (the standard solitonic potential) given by

u(x) = − 2

cosh2 x
, (19)

there is a single bona fide bound state with energy E = −1 and continuum states
with no reflection since the potential is transparent. Indeed, the whole E > 0 wave
function ψk(x) is obtained from the u(x) = 0 case by Darboux’s method (Blecua
et al., 2003). If D ≡ d/dx

ψk(x) ∼ (D − tanh x) exp(ikx). (20)

With the correct normalization included (so ψk(x � 0) ∼ exp(ikx)),

ψk(x) = (ik − tanh x)

ik + 1
exp(ikx). (21)

The relative spectral density is therefore

ρrel(k) =
∫ ∞

−∞
[|ψk(x)|2 − 1] dx = −2

k2 + 1
. (22)

The sum rule or k-integration gives of course

−2πN =
∫ ∞

−∞
ρrel(k) dk = −2π (23)

so that N = 1 as expected. There is more to say in this case, e.g. we find a zero-
energy resonance or “half-bound” state which corresponds to the k = 0 limit,
i.e.

ψk=0 = −tanh x. (24)

As regards the delta potential we have

u(x) = g δ(x) (25)

where in principle we leave the sign of g open. As the support of the potential is a
point, {0}, the solution for x �= 0 is always asymptotic; there is also no odd wave.
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For the spectral density we compute in this case

ρrel(k) =
∫ 0

−∞
[|ψk(x)|2 − 1] dx +

∫ ∞

0
[|ψk(x)|2 − 1] dx (26)

so that ∫ ∞

0
[|ψk(x)|2 − 1] dx =

∫ ∞

0
[|t(k)|2 − 1] dx = −|b(k)|2L (27)

for L → ∞. This divergence is in fact spurious and canceled with the x < 0
contribution, i.e.∫ 0

−∞
[|ψk(x)|2 − 1] dx =

∫ 0

−∞
[1 + |b(k)|2 + 2
{b(k) exp(−2ikx)} − 1] dx.

(28)
Now we define

2
∫ 0

−∞

{b(k) exp(−2ikx)} dx ≡ A + B (29)

so that

A = 2
∫ 0

−∞

{b(k)} cos 2kx dx. (30)

If we bear in mind that

2
∫ 0

−∞
cos 2kx dx =

∫ ∞

−∞
cos 2kx dx =

∫ ∞

−∞
exp(2ikx) dx = 2πδ(2k) = πδ(k)

(31)
then we have that

A = 
{b(0)}πδ(k) (32)

It is the case that

b(0) = −1 (33)

for a generic potential, including the delta, because ψk=0(x) = 0 so

exp(ikx) + b(k) exp(−ikx) = 0 as k → 0 (34)

and therefore b(0) = −1. The exception (critical potentials) occurs for a zero-
energy resonance, see later, when b(0) = 0. On the other hand (L → +∞)

B

�{b(k)} = 2
∫ 0

−L

sin(−2kx) dx = 1 − cos 2kL

k
(35)

so that

B = �{b(k)}
k

(36)
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as the oscillatory part cos 2kL gives no contribution as a measure when L → ∞.
Now for the delta potential itself we have (no odd wave)

f (k) = t(k) − 1 = b(k) = g

2ik − g
(37)

thus confirming b(0) = −1. So the relative spectral density as a whole is

ρrel(k) = −πδ(k) + 2g

g2 + 4k2
. (38)

Notice the delta piece, which will persist for any generic potential. Also, the
dependence ρrel(k) ∝ 1/k2 for k � 0 is general as the phase shift itself will fall
with 1/k (validity of the Born approximation) and we expect ρrel(k) ∝ δ′(k). Now
a k-integration would yield Levinson’s theorem; taking care to isolate the sign(g)
piece we get

−2πN = −π + sign(g) π. (39)

In other words

N = 1 − sign(g)

2
(40)

which is obviously correct: N = 1 (0) for g < 0 (g > 0).

5. GENERAL CALCULATION

Now we carry out the general calculation. Starting from

ψ ′′(x) + k2ψ(x) = u(x)ψ(x) (41)

we differentiate with respect to k (represented by the dot symbol), i.e. (Wellner,
1964; Kiers and van Dijk, 1996)

ψ̇ ′′(x) + 2kψ + k2ψ̇(x) = u(x)ψ̇(x). (42)

Why this unusual derivative? Because we expect the spectral density to
depend on k-derivatives of the scattering amplitudes (or phases shift) as said
before. Next we take real and imaginary parts of the wave function

ψk(x) = 
{ψk(x)} + i�{ψk(x)} (43)

since, the Schrödinger operator being real, each works separately. Now we con-
struct the Wronskian for, first, 
{ψk(x)} := �(x), which satisfies

�̇′′(x) + 2k�(x) + k2�̇(x) = u(x)�̇(x). (44)

If we multiply and substract in the usual way (e.g. to get the current) it is the
case that

[�̇(x)�′(x) − �(x)�̇′(x)]′ = 2k�2(x) (45)
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or (L → ∞, eventually)


{Ik} := �̇(x)�′(x) − �(x)�̇′(x)|L−L = 2k

∫ L

−L

�2(x) dx (46)

which, together with the imaginary contribution, is the crucial result since it allows
us to express the spectral density in terms of the asymptotic data. Next we define

A := 
{Ik} at L, B := �{Ik}, at L (47)

C := 
{Ik} at −L, D := �{Ik} at −L (48)

and

t(k) = |t(k)| exp(iϕt ), b(k) = |b(k)| exp(iϕr ) (49)

with 	 := ϕt + kL. In doing so

A = |t(k)|2 [k(ϕ̇t + L) + cos 	 sin 	], (50)

B = |t(k)|2 [k(ϕ̇t + L) − cos 	 sin 	]. (51)

So the total forward contribution is

A + B = 2k |t(k)|2 (ϕ̇t + L). (52)

This is very nice: the factor 2k of (45) appears, as well as the derivative of the
forward phase, (a hard datum; see below) while the L divergence will be spurious.

The calculation of the backward part is more involved as the wave function
is

ψ(x � 0) = exp(ikx) + b(k) exp(−ikx). (53)

By repeating the former method, now for the total backward contribution, we
get (after some cancellations between C and D)

C + D = 4kL − 2|b(k)|2k(ϕ̇r − L) + 2b(k) sin(ϕr + 2kL). (54)

As regards the regularized spectral density ρL(k) we have finally A + B −
C − D or

2kρL(k) = 4kL + 2kϕ̇t + 2k|b(k)|2(ϕ̇r − ϕ̇t ) + 2b(k) sin(ϕr + 2kL) (55)

So the final result is

−2πN =
∫ [

lim
L→∞

(ρL(k) − ρ
(0)
L (k)

]
dk (56)

where as expected

ρ
(0)
L (k) =

∫ L

−L

dx = 2L (57)
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To sum up

−2πN =
∫ ∞

−∞

[
ϕ̇t + |b(k)|2(ϕ̇r − ϕ̇t ) + b(k)

k
sin(ϕr + 2kL)

]
dk. (58)

As a matter of fact the first term of the integrand would be the relative spectral
density. What about the back phase and the oscillatory third term? We find that,
first, ∫ ∞

−∞

b(k)

k
sin(ϕr + 2kL) dk = πb(0) (59)

as shown in Appendix. So the sin(ϕr + 2kL)/k integral is really πδ(k) as a
distribution. This is completely rigorous because we are talking of measures
(projection-valued measures) and the delta is itself a measure (not so the delta
prime).

As regards the second term in (58) we write the zurdo contribution with k > 0
and then integrate from 0 to ∞, i.e.

|b(k)|2(ϕ̇r − ϕ̇t ) + |b̃(k)|2( ˙̃ϕr − ϕ̇t ) = |b(k)|2(ϕ̇r + ˙̃ϕr − 2ϕ̇t ) = 0, (60)

because (see (9) and (10)) |b(k)| = |b̃(k)| and 2ϕt − ϕr − ϕ̃r = π . So the final
expression for the relative spectral density is

ρrel(k) = ϕ̇t + πb(0)δ(k), k ≥ 0 (61)

see e.g. (Kiers and van Dijk, 1996; Sassoli de Bianchi, 1994). The first term,
derivative of the forward phase, comes by no surprise and represents the germ of
Levinson’s theorem. The second one gives a universal contribution since

b(0) = −1 (generic); b(0) = 0 (critical) (62)

as we already discussed. We remark here how the spectral density is a hard function
and therefore the forward phase, but not the backward one, is a hard datum.
Indeed, at least for finite-range potentials the forward amplitude can be expressed
in terms of the bound states plus an integral over the modulus of the reflected
amplitudes (Lamb, 1980). Again the usual proof is based on analytic continuation,
whereas ours stems directly from the definition of hard data as spectral data.

We can easily compute the value of ρrel(k) for large k. From the Born ap-
proximation

f (k) = t(k) − 1 � 1

2ik

∫ ∞

−∞
u(x) dx ≡ −i

2k
〈u〉. (63)

Hence

tan ϕt (k) � −〈u〉
2k

� ϕt (k) � −〈u〉
2k

(64)
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or

ρrel(k) = dϕt (k)

dk
→ 〈u〉

2k2
(k � 0). (65)

6. THE SUM RULE

The crowning result is Levinson’s theorem in one dimension: integrating (61)
from k = 0 to k = ∞ we find

N = [ϕt (0) − ϕt (∞)]

π
− b(0)

2
(66)

as first given (except that he took only b(0) = −1) by Barton (1985).
We already showed that b(0) = −1 for a generic potential, that is, when

the full wave function ψk(x) → 0 for k → 0. When the potential is critical the
zero-energy wave function is non-zero, just starting from

ψk→0 = [exp(ikx) + b(k) exp(−ikx)]k=0 = 1 (x � 0) (67)

and so b(0) = 0 for u(x) critical. Hence then |t(0)| = 1, but the phase depends
on the potential. In particular if u(x) is even, the zero-energy resonance is either
even or odd and therefore t(0) = ±1, ψk=0(x) even/odd. For example, in the
Pöschl-Teller case given by

u(x) = −�(� + 1)

cosh2 x
, � integer (68)

the zero-energy resonance has the parity of �. Thus the first member � = 1 of the
series obtains (see (24))

ψk=0(x) = − tanh x. (69)

Now we come to the most conspicuous aspect of the one-dimensional scat-
tering, namely the one-half factor in the generic case (66). As hinted at by Barton,
the reason is related to the fact that any attractive potential binds in one-dimension
(this theorem seems due to Peierls, 1929). Then, the u(x) = 0 potential is critical,
that is, increasing it a little bit in the attractive side produces a bona fide bound
state. Indeed, b(k) = 0 for no potential, the earmark for a critical potential, namely
transparency at k = 0. We like to call (68) supercritical because it is transparent,
i.e. there is no reflection at any energy.

The phase of the forward amplitude is related to the determinant of the
S-matrix. From (8) and the phase relation (10)

DetS(k) = t t̃ − bb̃ = t2 − |b|2 exp i(ϕr + ϕ̃r )

= |t |2 exp(2iϕt ) − eiπ |b|2 exp(2iϕt ) = exp(2iϕt ) (70)

already noticed by many people, e.g. Jauch (1957).
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Therefore, if s(k) := DetS(k),

[N + b(0)/2] = −1

2πi

∫
ṡ

s
dk (71)

very similar to the conventional proof, as the integral can be performed in the
complex plane Levinson (1949a).

The 1/2 contributions for critical potentials, both free u = 0 and interacting,
are reminiscent of the η-invariant in the APS index theorem for manifolds with
boundary; indeed, this can be seen explicitly in the supersymmetric formulation,
in which it appears as the index of the Dirac operator, giving e.g. fermion num-
bers 1/2 (see Niemi and Semenoff, 1986; Fahri et al., 1976). Moreover, the 1/2
value is characteristic of time-reversal invariant systems, both here and in the
fractionization case.

7. FINAL REMARKS

In principle our method can be applied in arbitrary dimension D: the Schrö-
dinger equation for scattering reads

∇2ψ(�r) + k2 ψ(�r) = u(�r) ψ(�r), (72)

where �r ∈ RD . Again u(�r) is real so taking real and imaginary parts and differen-
tiating with respect to k, we can get e.g. for the real part � = 
{ψ}∫

∂V

[�̇∇� − �∇�̇] dD−1σ = 2k

∫
V

�2 dD�r. (73)

The first term is evaluated asymptotically in terms of

ψk(r) → exp(ikr cos θ ) + r−(D−1)/2f () exp(ikr) (74)

as r � 0, without supposing u(�r) = u(|�r|), i.e. non-central potentials are included.
The second term in (73) is related, as before, to the spectral density. The calculation
proceeds in the same way, except that for D > 2 the case u(�r) = 0 is not critical.
We refrain to reproduce the well known results both for D = 2 and for D > 2 (for
D = 2 see Newton, 1977, 1983, 1984, 1982; Cheney, 1984).

Non-local potentials require a different strategy, because then time reversal
T does not necessarily hold. Here we want just to show how in one-dimension a
non-local real potential, which is T invariant, gives, in general, the same result as
the local case. The Schrödinger equation is now

ψ ′′(x) + k2ψ(x) =
∫ ∞

−∞
u(x, y)ψ(y) dy, (75)

where

u(x, y) = u(y, x)∗ (76)
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in all cases from hermiticity of the Hamiltonian H . If moreover T reversal holds,
u(x, y) is real (hence symmetric) and we get from (72)

ψ̇ ′′(x) + k2ψ̇(x) + 2k ψ =
∫ ∞

−∞
u(x, y)ψ̇(y) dy. (77)

Once again it suffices to take real and imaginary parts and write the
Wronskian to eliminate the term of the potential, so Levinson’s theorem seems to
hold untouched. However, for a non-local potential there might be exceptionally
bound states embedded in the continuum; for the form of the theorem in these
cases see (Martin, 1958).

As a final comment we want to compare the optical theorem in D dimen-
sions (Boya and Murray, 1994) with this Levinson’s theorem. Both depend on hard
data, hence the appearance of the forward amplitude is to be expected. Also, they
are interference-type formulae, linear in t , and represent the same completeness.
For the optical theorem it is in coordinate space and takes the form of a conserved
current, indeed the Noether current associated to the classical Lagrangian repro-
ducing the time-dependent Schrödinger equation with a global phase invariance.
For the spectral density the completeness appears in k-space; the sum rule for this
case is a kind of global invariant of the problem.

The generalization of this presentation for the arbitrary D dimensional case
is in progress.3

APPENDIX

Equation (59) is

I ≡
∫ ∞

−∞

b(k)

k
sin(ϕr + 2kL) dk for L → ∞. (A.1)

Define 2kL = k′; then

I =
∫ ∞

−∞
b(k′/2L) sin[ϕr (k′/2L) + k′] dk′/k′

= b(0)
∫ ∞

−∞
sin(k′) dk′/k′ = πb(0) (A.2)

as both ϕr (0), ϕ̃r (0) and b(0) are regular.

3 In collaboration with M. Aguado.
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